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A B S T R A C T   

Aims: To evaluate the long-term efficacy of high-frequency (10 kHz) spinal cord stimulation (SCS) for treating 
refractory painful diabetic neuropathy (PDN). 
Methods: The SENZA-PDN study was a prospective, multicenter, randomized controlled trial that compared 
conventional medical management (CMM) alone with 10 kHz SCS plus CMM (10 kHz SCS+CMM) in 216 patients 
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with refractory PDN. After 6 months, participants with insufficient pain relief could cross over to the other 
treatment. In total, 142 patients with a 10 kHz SCS system were followed for 24 months, including 84 initial 10 
kHz SCS+CMM recipients and 58 crossovers from CMM alone. Assessments included pain intensity, health- 
related quality of life (HRQoL), sleep, and neurological function. Investigators assessed neurological function 
via sensory, reflex, and motor tests. They identified a clinically meaningful improvement relative to the baseline 
assessment if there was a significant persistent improvement in neurological function that impacted the par
ticipant’s well-being and was attributable to a neurological finding. 
Results: At 24 months, 10 kHz SCS reduced pain by a mean of 79.9% compared to baseline, with 90.1% of 
participants experiencing ≥50% pain relief. Participants had significantly improved HRQoL and sleep, and 
65.7% demonstrated clinically meaningful neurological improvement. Five (3.2%) SCS systems were explanted 
due to infection. 
Conclusions: Over 24 months, 10 kHz SCS provided durable pain relief and significant improvements in HRQoL 
and sleep. Furthermore, the majority of participants demonstrated neurological improvement. These long-term 
data support 10 kHz SCS as a safe and highly effective therapy for PDN. 
Trial Registration: ClincalTrials.gov Identifier, NCT03228420.   

1. Introduction 

Globally, the number of people with diabetes has quadrupled in the 
last two decades [1]. Diabetic neuropathy (DN) is a frequent long-term 
complication of diabetes, with an estimated lifetime prevalence 
exceeding 50% [2]. Typically starting in the feet and gradually 
ascending to the lower legs [3], symptoms classically manifest as 
numbness, tingling/paresthesia, loss of protective sensation, impaired 
balance and weakness, and reduced response to stimuli such as cold 
temperature and pinprick [3]. Over time, as the feet become progres
sively insensate, the risk of injury increases, leading to a greater likeli
hood of falls, fractures, foot ulceration, and lower limb amputation 
[3–7]. 

Painful diabetic neuropathy (PDN), affecting up to 25% of people 
with diabetes [8], is characterized by painful burning, lancinating, 
tingling, and/or shooting sensations, which can be severe and contin
uous, particularly at night [3]. Consequently, individuals with PDN 
suffer significantly reduced health-related quality of life (HRQoL), 
impaired functionality, and comorbidities such as sleep disorders and 
depression/anxiety [9]. 

Long-term management of PDN usually includes the prescription of 
oral neuropathic pain medications [3]. However, the effectiveness of 
these medications is relatively low, as measured by the number needed 
to treat (NNT; the number of patients that need to be treated before we 
expect one extra patient to be a treatment responder versus the control 
treatment) [10–14]. Additionally, many patients discontinue these 
medications, primarily due to inadequate pain relief and/or intolerable 
side effects [15]. Although the FDA has recently approved an 8% 
capsaicin patch as an alternative treatment, its effectiveness is also 
limited [13,16]. Overall, existing pharmacotherapies fail to provide 
long-term pain relief for the majority of PDN patients. 

Spinal cord stimulation (SCS) is a safe and reversible non
pharmacological therapy for chronic neuropathic pain. In the traditional 
form of SCS, low-frequency pulses (40–60 Hz) are applied to the spinal 
cord to induce continuous paresthesia over the painful area, thereby 
masking the pain sensation. A more recent SCS innovation uses high- 
frequency 10 kHz pulses (“10 kHz SCS”) to relieve pain without pares
thesia, which may be more comfortable for patients [17,18]. Recent 
results from a large randomized controlled trial (RCT; “SENZA-PDN 
study”) show that 10 kHz SCS provides substantial pain relief in PDN 
patients, with many demonstrating improved sensation on neurological 
examination [19,20]. Based on these findings, the FDA approved 10 kHz 
SCS for this indication in 2021. The American Association of Clinical 
Endocrinology and experts in a recent Clinical Compendia Series from 
the American Diabetes Association have also recommended 10 kHz SCS 
therapy as a treatment for refractory PDN pain with a high level of ev
idence [3,21]. 

Given the severe and chronic nature of PDN, any analgesic treatment 
must provide robust, durable pain relief. Here, we present the results of 

the SENZA-PDN study after 6 and 24 months of treatment with 10 kHz 
SCS. 

2. Materials and methods 

2.1. Study design 

The SENZA-PDN study was a multicenter, prospective, randomized, 
open-label clinical study conducted in the United States at 18 centers. A 
detailed description of the study design and procedures has previously 
been published [22]. Prior to study initiation, Institutional Review 
Board (IRB) approval was obtained (Western IRB or local site IRB, when 
applicable). The study was conducted following the Declaration of 
Helsinki and Good Clinical Practices, reported under the Consolidated 
Standards of Reporting Trials (CONSORT) guideline [19], and registered 
with ClinicalTrials.gov (NCT03228420). 

2.2. Participants 

To be eligible for study enrollment, patients had to have PDN 
symptoms for 12 months or longer that were refractory to current or 
prior treatment with a gabapentinoid and at least 1 other class of 
analgesic drug, experience lower limb pain intensity of ≥5 cm on a 10- 
cm visual analog scale (VAS), hemoglobin A1c (HbA1c) ≤10% (86 
mmol/mol), and be suitable surgical candidates. Exclusion criteria 
included upper extremity pain intensity due to diabetic neuropathy of 
≥3 cm on a 10-cm VAS, body mass index >45 kg/m2, daily opioid 
dosage >120 mg morphine equivalents, and not an appropriate candi
date for implantation or study involvement based on a recent psycho
logical assessment. 

2.3. Randomization 

Patients who met eligibility requirements and provided written 
informed consent were randomized (1:1) to conventional medical 
management (CMM) alone or 10 kHz SCS plus CMM (10 kHz 
SCS+CMM). Randomization procedures have previously been reported 
[19]. At the end of the 6-month randomized phase, patients could cross 
to the other treatment arm if they had less than 50% pain relief from 
baseline, were dissatisfied with their treatment, and the investigator 
agreed that the switch was appropriate. Patients who received 10 kHz 
SCS therapy (including the original 10 kHz SCS+CMM recipients and 
CMM-to-10 kHz SCS+CMM crossover patients) were followed up for 24 
months postimplantation. 

2.4. Interventions 

Interventions have been described previously [19,20]. In brief, in
vestigators administered CMM to all enrolled patients according to their 
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standard of care for PDN and diabetes. Individuals receiving 10 kHz SCS 
underwent a 5–7 day trial with an external stimulator connected to 2 
percutaneous leads placed in the posterior epidural space. Patients who 
experienced ≥50% pain relief from baseline (ie, trial success) were 
eligible to receive a permanent 10 kHz SCS system (Nevro Corp.) [17]. 

2.5. Outcomes 

The investigators collected data at baseline, the end of the stimula
tion trial (all 10 kHz SCS+CMM recipients), and during regular follow- 
up intervals up to 24 months (Fig. 1). Assessments included measures of 
lower limb pain intensity (0–10 cm VAS) [23], patient-reported neuro
pathic pain (Douleur Neuropathique 4 Questions, DN4; 0–10 points 
scale) [24–26], pain interference with sleep (Pain and Sleep Question
naire Three-Item Index, PSQ-3; 0–10 cm scale) [27], and HRQoL 
(EuroQol 5-Dimensional 5-Level questionnaire, EQ-5D-5L) [28], with 
HbA1c determined using standard blood tests. 

Patient safety was also evaluated by monitoring adverse events and 
performing a comprehensive neurological evaluation at baseline and 
selected follow-up visits. As previously reported, independent neurolo
gists developed this examination and trained the investigators to assess 
motor, sensory, and reflex function [19,20]. At each follow-up neuro
logical examination, investigators used their clinical judgment to 
determine if there was a clinically meaningful deficit, no change, or a 
clinically meaningful improvement from baseline in each motor, sen
sory, and reflex function. From these results, overall neurological status 
was classified as improvement, maintenance, or deficit via the following 
criteria: improvement (improvement in at least 1 function without any 
deficit in any other function), maintenance (maintenance in all func
tions), or deficit (deficit in any function). 

2.6. Statistical methods 

A previous publication describes and reports the sample size 

calculation [22]. The current statistical analysis evaluated the results at 
the end of (1) the randomized phase, ie, 6 months after baseline, and (2) 
the postimplantation phase, ie, 24 months after implantation with a 
permanent 10 kHz SCS system (this includes the original 10 kHz 
SCS+CMM group and the CMM-to-10 kHz SCS+CMM crossover cohort). 
Statistical analyses were conducted separately for each phase. 

For the randomized phase, results were evaluated for the CMM alone 
group and the 10 kHz SCS+CMM group. For the postimplantation phase, 
results were evaluated for (1) implanted participants from the original 
10 kHz SCS+CMM group, (2) implanted participants from the CMM-to- 
10 kHz SCS+CMM crossover cohort, and (3) all implanted participants. 
We defined the preimplantation time point as study baseline in the 
original 10 kHz SCS+CMM group and the end of the randomized phase 
in the CMM-to-10 kHz SCS+CMM crossover patients. 

In addition to raw scores and percentage change from baseline or 
preimplantation, we evaluated lower limb pain intensity VAS data at 6 
and 24 months according to responders (≥50% pain relief from baseline 
or preimplantation) and profound responders (≥80% pain relief from 
baseline or preimplantation). Using standard methods, we also calcu
lated the NNT [29]. 

Results are presented for all available data at each study visit. Sta
tistical analyses were conducted in SAS (Version 9.4, SAS Institute Inc., 
Cary, NC). To statistically evaluate time and group effects for continuous 
and ordinal variables, missing data was first imputed via a multiple 
imputation procedure using all available nonmissing data for that 
outcome. Each imputed dataset was then analyzed with a repeated- 
measures linear model, and these results were summarized using the 
MIANALYZE procedure. The repeated-measures model included time 
and group as fixed effects and subject as a random effect, with an 
autoregressive correlation structure of order 1. Similar logistic and 
nonlinear repeated-measures models were used for proportions and 
percentage change in outcomes over time, respectively. However, 
imputation was not possible for 6 participants who withdrew prior to 
any neurological/sensory assessments follow-up. Consequently, these 

Fig. 1. Disposition of All Screened Participants.  
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participants were classified as not having neurological or sensory 
improvement. 

3. Results 

3.1. Study population and demographics 

The study investigators enrolled patients between August 28, 2017, 
and August 23, 2019 (Fig. 1). A total of 113 participants were ran
domized to receive 10 kHz SCS+CMM and 103 to CMM alone, with 
optional crossover at 6 months if specific criteria were met. 

Baseline characteristics for the 216 randomized participants have 
previously been reported [19,20]. In brief, the participants had a mean 
age (SD) of 60.8 years (10.7), and 63% were male. Median durations 
(interquartile range) of diabetes and PDN symptoms were 10.9 
(6.3–16.4) and 5.6 years (3.0–10.1), respectively. Baseline characteris
tics were comparable between the randomized groups. Baseline neuro
logical exam results (reflexes, motor strength, and sensory function) 
were also similar between the randomized groups, with the only sig
nificant difference noted in a higher percentage of normal responses for 
light touch in the CMM alone group (73.9% vs 65.0% for the CMM alone 
and 10 kHz SCS+CMM groups, respectively; P <.001, Fisher’s Exact 
Test). 

Among the 113 participants originally assigned to 10 kHz 
SCS+CMM, 104 completed the temporary stimulation trial, with 98 
(94.2%) reporting pain relief of at least 50% from baseline (ie, trial 
success). Of the 90 patients who received a permanent system, 88 
completed 6 months of follow-up, and 84 completed 24 months of 

follow-up. At 6 months, none of the original 10 kHz SCS+CMM re
cipients elected to cross over to the CMM alone arm. 

In the control group (CMM alone), 95 participants completed the 6- 
month follow-up, with 83 eligible to cross over to the 10 kHz SCS+CMM 
arm. Of these, 77 (92.8%) crossed over and underwent a temporary 
stimulation trial, with 73 (94.8%) reporting trial success. Fifty-eight of 
the 64 patients who underwent permanent implantation completed 24 
months of follow-up after their preimplantation assessment. 

A total of 181 patients underwent a 10 kHz SCS trial, including the 
original 10 kHz SCS+CMM recipients and those who received 10 kHz 
SCS+CMM after crossing over from CMM alone, ie, the CMM-to-10 kHz 
SCS+CMM crossover group. Of these, 171 (94.5%) had a successful trial, 
154 underwent permanent implantation, and 142 completed 24 months 
of follow-up (Fig. 1). 

3.2. Safety 

Through 24 months, no stimulation-related neurological deficits 
occurred, and no devices were explanted due to lack of efficacy. Among 
154 permanently implanted participants, 7 (4.5%) experienced a study- 
related serious adverse event (SAE), and 8 (5.2%) had a procedure- 
related infection. Three infections resolved with standard treatment, 
while 5 required explantation (3.2% of all implanted patients). Of the 5 
explanted patients, 4 exited the study, while 1 continued participation 
after reimplantation. One additional explant occurred as a precaution 
for an unrelated infection. Five other participants (3.2%) underwent 
revision surgery to reposition or replace the implantable pulse generator 
(IPG), and 3 (1.9%) had their leads repositioned or replaced due to 
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migration. All participants with repositioned/replaced system compo
nents remained in the study. One additional infection occurred during 
the stimulation trial that resolved with standard treatment. 

3.3. Lower limb pain relief 

3.3.1. Randomized phase 
In the 10 kHz SCS recipients, lower limb pain scores assessed on a 10- 

cm visual analog scale (VAS) decreased by a mean of 76.4% (95% CI, 
70.9%–81.9%; P <.001), from a baseline mean of 7.6 cm (95% CI, 
7.3–7.9) to 1.7 cm (95% CI, 1.3–2.1; P <.001) at 6 months (Fig. 2A). In 
contrast, the control group had no significant change in lower limb pain 
VAS score, with a baseline mean of 7.1 cm (95% CI, 6.8–7.4) and a 6- 
month mean of 6.9 cm (95% CI, 6.4–7.3; P =.23 vs baseline; P <.001 
vs 10 kHz SCS+CMM). 

At 6 months, 85.2% (95% CI, 76.3%–91.2%; 75 of 88) of the 10 kHz 
SCS recipients were responders (≥50% pain relief from baseline), with 
63.6% (95% CI, 53.2%–72.9%; 56 of 88) classified as profound re
sponders (≥80% pain relief from baseline). In comparison, 6.3% (95% 
CI, 2.9%–13.1%; 6 of 95; P <.001 vs 10 kHz SCS+CMM) of the control 
group were responders, and 4.2% (95% CI, 1.6%–10.3%; 4 of 95; P 
<.001 vs 10 kHz SCS+CMM) were profound responders. The NNT for 
50% pain relief at 6 months for 10 kHz SCS+CMM was 1.3 (95% CI, 
1.2–1.5). 

3.3.2. Postimplantation phase 
After 24 months of 10 kHz SCS, the mean lower limb pain VAS score 

in the group of all implanted patients decreased from a preimplantation 
mean of 7.6 cm (95% CI, 7.3–7.8) to 1.5 cm (95% CI, 1.2–1.8; P <.001), 

a mean reduction of 79.9% (95% CI, 76.3%–83.6%; P <.001). Pain relief 
and percentage pain relief at 24 months were consistent between the 
original 10 kHz SCS+CMM group and the CMM-to-10 kHz SCS+CMM 
crossover cohort (P =.22 for pain relief and P =.12 for percentage pain 
relief; Fig. 2B). At 24 months, 90.1% (95% CI, 84.1%–94.0%; 128 of 
142) of the implanted patients were responders (Fig. 2C), with 65.5% 
(95% CI, 57.4%–72.8%; 93 of 142) classified as profound responders, 
and no patients had increased pain relative to baseline. 

3.4. Patient-Reported neuropathic pain (DN4) 

3.4.1. Randomized phase 
During the randomized phase, the 10 kHz SCS recipients experienced 

a significant reduction in neuropathic pain, as measured by the Douleur 
Neuropathique questionnaire (DN4; 0–10 points scale). The mean DN4 
score decreased from 6.5 (95% CI, 6.2–6.9) at baseline to 3.5 (95% CI, 
3.0–4.0; P <.001) at 6 months, while control participants had no sig
nificant change (P =.79 vs baseline; P <.001 vs 10 kHz SCS+CMM; 
Fig. 3A). 

A DN4 score ≥4 is consistent with clinically confirmed PDN. In the 
10 kHz SCS recipients, the proportion with a DN4 score <4 increased 
significantly from 2.2% (95% CI, 0.6%–7.7%; 2 of 90) at baseline to 
49.4% (95% CI, 39.2%–59.7%; 43 of 87; P <.001) at 6 months, while the 
corresponding proportion in the control group was unchanged (P =.34 
vs baseline; P <.001 vs 10 kHz SCS+CMM; Fig. 3B). 

3.4.2. Postimplantation phase 
Among all implanted patients, DN4 scores decreased from a preim

plantation mean of 6.6 (95% CI, 6.3–6.9) to 3.5 (95% CI, 3.1–3.9; P 
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<.001) after 24 months of 10 kHz SCS. This decrease in DN4 scores was 
due to a combination of reductions in the symptom subscore (mean 
reduction, 2.1; 95% CI, 1.7–2.4) and the examination findings subscore 
(mean reduction, 1.0; 95% CI, 0.8–1.3). In addition, the proportion of 
the group with a DN4 score <4 increased from 3.9% (95% CI, 1.8%– 
8.2%; 6 of 154) to 48.9% (95% CI, 40.8%–57.1%; 69 of 141; P <.001). 
At 24 months, DN4 results were comparable between the original 10 
kHz SCS+CMM group and the CMM-to-10 kHz SCS+CMM crossover 
cohort (P =.14 for both outcomes; Fig. 3C and Fig. 3D). 

3.5. Neurological outcomes 

3.5.1. Randomized phase 
At 6 months, significantly more 10 kHz SCS recipients demonstrated 

a clinically meaningful improvement in sensory, motor, or reflex func
tion from study baseline without deterioration in any category (62.4% of 
participants assessed to have improved; 95% CI, 51.7%–71.9%; 53 of 
85) compared to the control group (3.2% of participants assessed to have 
improved; 95% CI, 1.1%–9.0%; 3 of 94; P <.001 vs 10 kHz SCS+CMM; 
Fig. 4A). Most of the improvements noted with 10 kHz SCS were in 
sensory function (58.8% of participants assessed to have improved; 95% 
CI, 48.2%–68.7%; 50 of 85; P <.001 vs CMM alone; Fig. 4B). 

3.5.2. Postimplantation phase 
Investigators assessed neurological function versus study baseline in 

all implanted patients. After 24 months of 10 kHz SCS, 92 of 140 
implanted individuals (65.7%; 95% CI, 57.5%–73.1%) exhibited a 
clinically meaningful improvement over study baseline in sensory, 
motor, or reflex function, without worsening in any category. Most of 
the neurological gains were observed in sensory function (65.0% of 
participants assessed to have improved; 95% CI, 56.8%–72.4%; 91 of 
140). Additionally, the reported neurological and sensory improvement 
outcomes were similar between the original 10 kHz SCS+CMM group 
and the CMM-to-10 kHz SCS+CMM crossover cohort, with the initial 10 
kHz SCS recipients showing higher improvement rates that reached 
statistical significance for neurological function at 24 months post
implantation (P =.048 for neurological improvement and P =.076 for 
sensory improvement; Fig. 4C and Fig. 4D). 

3.6. Health-Related quality of life 

3.6.1. Randomized phase 
Health-related quality of life significantly improved after 6 months of 

10 kHz SCS, based on the EuroQol 5-Dimensional 5-Level (EQ-5D-5L) 
questionnaire. The mean EQ-5D-5L index value increased by 0.130 (95% 
CI, 0.097–0.163; P <.001) from baseline in the 10 kHz SCS recipients, 
while the index value for the control participants declined by 0.031 but 
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Fig. 4. Neurological Outcomes. Standardized neurological assessments were performed at baseline and follow-up visits, including motor, sensory, and reflex tests. 
(A) Proportion of participants with a clinically meaningful improvement in sensory, motor, or reflex function from study baseline (without deficit in any category) 
during the 6-month randomized phase. (B) Proportion of participants with a clinically meaningful improvement in sensory function from study baseline during the 6- 
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deficit in any category) during the 24-month postimplantation phase. (D) Proportion of participants with a clinically meaningful improvement in sensory function 
from study baseline during the 24-month postimplantation phase. Error bars indicate 95% CI; #P <.001 vs CMM alone; ^P =.048 vs CMM crossover to 10 kHz 
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was not significantly different from baseline (P =.090; Fig. 5A). Addi
tionally, at the 6-month assessment, the 10 kHz SCS recipients had 
significantly higher HRQoL than the control participants (P <.001). 

3.6.2. Postimplantation phase 
Among all implanted patients, the mean EQ-5D-5L index value 

increased by 0.146 (95% CI, 0.117–0.175; P <.001) from preimplanta
tion to 24 months, with the improvement in HRQoL consistent between 
the original 10 kHz SCS+CMM group and the CMM-to-10 kHz 
SCS+CMM crossover cohort (P =.37; Fig. 5B). 

3.7. Pain interference with sleep 

3.7.1. Randomized phase 
Baseline sleep quality was poor among all study participants, as 

shown by mean scores on the Pain and Sleep Questionnaire 3-Item Index 
(PSQ-3; 0–10 cm scale) of 6.1 cm (95% CI, 5.5–6.6) in the 10 kHz SCS 
recipients and 6.5 cm (95% CI, 6.0–6.9) in the control group. Pain 
interference with sleep reduced by a mean of 62.1% (95% CI, 54.6%– 
69.7%; P <.001) after 6 months of 10 kHz SCS, resulting in a mean PSQ- 
3 score of 2.1 cm (95% CI, 1.7–2.6), while control participants had no 
significant change (P =.91 vs baseline; P <.001 vs 10 kHz SCS+CMM; 
Fig. 5C). 

3.7.2. Postimplantation phase 
Treatment with 10 kHz SCS significantly reduced pain interference 

with sleep in the group of all implanted patients over 24 months, as 
demonstrated by a 65.5% (95% CI, 57.5%–73.5%; P <.001) decrease in 
the mean PSQ-3 score, from 6.5 cm (95% CI, 6.1–6.9) at preimplantation 
to 1.9 cm (95% CI, 1.6–2.3; P <.001) at 24 months. In addition, the 

improvement in sleep quality was comparable between the original 10 
kHz SCS+CMM group and the CMM-to-10 kHz SCS+CMM crossover 
cohort (P =.93; Fig. 5D). 

3.8. Glycemic control 

3.8.1. Randomized phase 
The 10 kHz SCS recipients had a mean HbA1c of 7.4% (95% CI, 

7.1–7.6) (mean, 57 mmol/mol; 95% CI, 54–60) at baseline and 7.5% 
(95% CI, 7.2–7.8; P =.51) (mean, 59 mmol/mol; 95% CI, 55–62) after 6 
months of 10 kHz SCS. In the control group, mean HbA1c was 7.4% 
(95% CI, 7.2–7.7) (mean, 57 mmol/mol; 95% CI, 55–61) at baseline and 
7.5% (95% CI, 7.2–7.8; P =.45) (mean, 59 mmol/mol; 95% CI, 55–62) at 
6 months. 

3.8.2. Postimplantation phase 
In the group of all implanted patients, mean HbA1c was 7.5% (95% 

CI, 7.3–7.7) (mean, 59 mmol/mol; 95% CI, 56–61) at preimplantation 
and 7.3% (95% CI, 7.1–7.6; P =.11) (mean, 56 mmol/mol; 95% CI, 
54–60) after 24 months of 10 kHz SCS. The mean percentage change 
over 24 months was similar between the original 10 kHz SCS+CMM 
group and the CMM-to-10 kHz SCS+CMM crossover cohort (P =.99). 

4. Discussion 

The SENZA-PDN study, the largest RCT to evaluate SCS in PDN pa
tients to date, found that 10 kHz SCS provided significant and durable 
pain relief as well as improved HRQoL and sleep over the 24-month 
study period. Comparable to the 6- and 12-month study outcomes, the 
24-month results confirm the robust and long-lasting beneficial effects of 
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10 kHz SCS in PDN patients [19,20,30]. These are important findings, 
given the severe, chronic, and debilitating nature of PDN and the lack of 
effective treatment options for this patient population. Moreover, in
vestigators observed neurological improvement in a remarkably high 
proportion of patients after 10 kHz SCS treatment. To our knowledge, no 
other SCS treatment for PDN has exhibited this potentially disease- 
modifying effect. For each cohort evaluated, HbA1c did not show a 
statistically significant change over the 24-month follow-up period, 
supporting that the study results were not due to changes in glycemic 
control. 

4.1. 10 kHz SCS versus traditional low-frequency SCS 

Compared to previous RCTs that evaluated traditional paresthesia- 
based low-frequency SCS (LF-SCS) in similar PDN patients with a 
similar study design and control treatment [31,32], 10 kHz SCS treat
ment resulted in a greater reduction in pain at 6 months than LF-SCS 
(76% vs 41%–55%, respectively) and a higher responder rate for 50% 
pain relief (85% vs 53%–69%, respectively). By 24 months, the differ
ences in pain reduction (80% vs 39%, respectively) and responder rate 
(90% vs 41%, respectively) were even more pronounced [33]. Evidence 
from a 6-month indirect comparison of RCT stimulation arm outcomes 
in PDN supports this observation, with the analysis finding significantly 
higher pain relief and responder rate for 10 kHz SCS over LF-SCS [18]. 

In the long-term LF-SCS RCT, increasing pain scores between 6 and 
24 months suggest diminishing pain relief over time [34], a phenome
non observed in other chronic pain indications treated with LF-SCS 
[35–41]. According to the published literature, loss of efficacy during 
LF-SCS affects 10% to 25% of patients [35,38,41], accounts for 40% to 
75% of all explants [35,42–45], and often occurs within 1 year [35]. In 
contrast, the high level of pain relief with 10 kHz SCS in the current 
study was durable through 24 months. Moreover, 10 kHz SCS provides 
pain relief without paresthesia, which may be more comfortable and 
tolerable than LF-SCS, especially in PDN patients who experience severe 
disease-induced paresthesia. 

In the same long-term LF-SCS RCT, several HRQoL and sleep pa
rameters did not differ from CMM at 6 months and did not show sig
nificant improvement over baseline at 24 months [32,34]. In 
comparison, patients who received 10 kHz SCS had significantly better 
HRQoL and sleep at 6 months than those treated with CMM, and these 
benefits lasted for the full 24 months. In particular, the increase of 0.146 
in the mean EQ-5D-5L index value with 10 kHz SCS is highly clinically 
relevant, based on an estimated minimally important difference (MID) 
of 0.03 to 0.05 in patients with type 2 diabetes mellitus (ie, 2.9 to 4.9 
times the MID) [46]. The long-term improvement in sleep with 10 kHz 
SCS is also important because patients with chronic pain repeatedly 
indicate that sleep is a high-priority treatment outcome [47–49]. 

4.2. 10 kHz SCS versus pharmacotherapy 

The effectiveness of 10 kHz SCS compared to pharmacotherapy also 
appears very favorable. The NNT values for duloxetine, pregabalin, and 
gabapentin in PDN and neuropathic pain (including PDN pain) for the 
outcome of ≥50% pain relief versus placebo are reported to range from 5 
to 16 at follow-up of 16 weeks or less [10–13]. Tricyclic antidepressants, 
mainly amitriptyline, appear to be more effective (NNT, 3.6); however, 
amitriptyline is often poorly tolerated [13]. 

In contrast to pharmacotherapy, the SENZA-PDN study had very low 
NNT values for ≥50% pain relief versus CMM alone at 1, 3, and 6 
months, with values of 1.4, 1.2, and 1.3, respectively. These NNT values 
indicate that PDN patients who are suitable candidates for 10 kHz SCS 
have a much higher likelihood of treatment success than with CMM 
alone. Of course, it should be kept in mind when reviewing the NNT 
values that the control arms in the SENZA-PDN study and the pharma
cotherapy trials were not identical, even if the overall study populations, 
timeframe, and outcome measures were similar. 

4.3. Safety 

The incidence and type of procedure-related complications were 
comparable to those reported in the SCS literature for all patient pop
ulations [50]. SAE rates were very low, and lead migration, IPG/lead 
revision surgery, and explant rates were at the lower end of the reported 
ranges for SCS [50]. Considering that patients with diabetes can be more 
susceptible to infection, it was reassuring to find that the incidence of 
infection during the SENZA-PDN study (5.2%) was within the range for 
SCS in other indications (3.4%–10.0%; mean, 5.2%; excluding PDN 
studies) [50]. Furthermore, the rate of explant due to infection in the 
current study was low, at 3.2%, and no devices were explanted due to 
lack of efficacy. Overall, the safety results support that patients with 
diabetes have no additional risk of complications with SCS. 

4.4. Neurological/Sensory improvement 

The neurological benefits observed after treatment with 10 kHz SCS 
are another noteworthy finding. Relative to their baseline examination, 
66% of the patients had improved neurological status at the 24-month 
assessment, with improvement most often in the sensory domain. A 
recent small, open-label clinical study demonstrated statistically sig
nificant increases in intraepidermal nerve fiber density in the lower limb 
after 6 and 12 months of 10 kHz SCS [51], providing a potential 
mechanism for the observed improvements in sensory function. Inter
estingly, participants with sensory improvement at 24 months had 
higher preimplantation HbA1c compared to those with no change or 
reduced sensory function at 24 months (HbA1c, 7.7% vs. 7.2%; P =.021 
via t-test), which suggests that patients with higher preimplantation 
HbA1c may be more likely to experience sensory improvement with 10 
kHz SCS. These outcomes merit further exploration, given the increased 
risk of foot ulceration and lower limb amputation associated with dia
betic neuropathy [6,7]. Based on our review of the literature, we are 
unaware of other SCS therapies associated with this potentially disease- 
modifying effect of 10 kHz SCS [52]. 

4.5. Study limitations 

This pragmatic study aimed to provide high-level evidence to aid 
clinical decision-making, albeit with some limitations. Comparing an 
implanted SCS device with CMM made it impossible to blind partici
pants and study personnel, leading to a risk of biased outcomes and a 
possible placebo effect. However, the results through 24 months with 10 
kHz SCS were consistent, indicating minimal placebo effect. 

Another limitation is the potential impact of missed visits on study 
results. However, relatively few visits were missed despite conducting 
the study during the COVID-19 pandemic. Furthermore, we found 
minimal impact across study outcomes when we accounted for missing 
data using a multiple imputation method. For example, the mean 
reduction in pain was 79.9% among all implanted participants at 24 
months using all available data and 79.7% using all available data plus 
imputed data. The corresponding responder rates were 90.1% and 
89.5%, respectively. 

When interpreting the observed neurological improvements in this 
study, it is important to acknowledge certain limitations. Firstly, 
although the examination was developed as part of an RCT, it was not 
based on a validated scale. Additionally, the assessments of neurological 
status were conducted by trained clinicians who relied on their clinical 
judgment to determine changes. Despite standardized training, there is a 
possibility that inter-assessor variability may have influenced the test 
results. Furthermore, it should be noted that the investigators were not 
blinded to the treatment allocation when evaluating the neurological 
outcomes. Lastly, the assessment of neurological outcomes was per
formed relative to the study baseline examination for all patients in the 
study. Specifically, the 24-month postimplantation assessment in the 
CMM-to-10 kHz SCS+CMM crossover participants corresponded to 30 
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months after the study baseline exam, while the original 10 kHz SCS 
recipients were evaluated at 24 months after the study baseline exam. It 
is possible that the crossover cohort clinically deteriorated during the 
extra 6 months of CMM-only treatment prior to implantation, which 
may have contributed to their lower overall neurological and sensory 
improvements and the between-group difference in neurological 
outcome that achieved statistical significance at 24 months (P =.048, 
original 10 kHz SCS recipients vs CMM-to-SCS+CMM crossover group). 
While both groups still had meaningful neurological improvements, 
these outcomes suggest that delaying treatment for indicated patients 
could result in further neurological decline over time. 

5. Conclusions 

The results of this randomized controlled trial demonstrate robust, 
high-level evidence that 10 kHz SCS provides significant and durable 
pain relief in patients with refractory lower limb PDN pain. In addition, 
10 kHz SCS treatment resulted in significantly improved sleep and 
HRQoL at 24 months, as well as neurological improvement in the ma
jority of patients, providing a comprehensive solution for PDN man
agement. The remarkable 24-month responder rate of 90% 
demonstrates that the therapy is highly effective and an important 
nonpharmacological therapy option. Furthermore, consistent pain relief 
for the original recipients of 10 kHz SCS and the implanted crossover 
participants (who received 10 kHz SCS after 6 months of CMM) supports 
that indicated patients should be treated without delay. 
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